|
Fractional-order control (FOC) is a field of control theory that uses the fractional-order integrator as part of the control system design toolkit. The fundamental advantage of FOC is that the fractional-order integrator weights history using a function that decays with a power-law tail. The effect is that the effects of all time are computed for each iteration of the control algorithm. This creates a 'distribution of time constants,' the upshot of which is there is no particular time constant, or resonance frequency, for the system. In fact, the fractional integral operator , in the sense that it is a non-local operator that possesses an infinite memory and takes into account the whole history of its input signal.〔M. S. Tavazoei, M. Haeri, S. Bolouki, and M. Siami, "Stability preservation analysis for frequency-based methods in numerical simulation of fractional-order systems," SIAM Journal on Numerical Analysis, vol. 47, pp. 321–338, 2008.〕 Fractional-order control shows promise in many controlled environments that suffer from the classical problems of overshoot and resonance, as well as time diffuse applications such as thermal dissipation and chemical mixing. Fractional-order control has also been demonstrated to be capable of suppressing chaotic behaviors in mathematical models of, for example, muscular blood vessels. ==See also== *Differintegral *Fractional calculus * Fractional-order system 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Fractional-order control」の詳細全文を読む スポンサード リンク
|